Latest Past Events

PhD and Post Doc Quantum Seminar Series: Junyu Zhou

LRSM 112C 3231 Walnut St, Philadelphia

The QUIEST Center is thrilled to be kicking off a new seminar series this semester geared towards PhD and Post Doc students across SEAS and SAS to present on quantum-related...

Qing Gu (NCSU): Materials Science and Engineering Seminar

Wu and Chen Auditorium (Levine Hall) 3330 Walnut Street, Philadelphia

Title: “Opportunities in Whispering-Gallery Microresonators: Fundamentals and Applications”

Dr. Gu received the Bachelor’s degree from University of British Columbia, Canada in 2008, and the Ph.D. degree from University of California, San Diego in 2014, both in Electrical Engineering. Prior to joining NC State, she was an Assistant Professor at the University of Texas at Dallas from 2016 to 2021. Her research activities include the experimental realization of quantum-inspired nanophotonic semiconductor light sources using emerging materials or novel cavity configurations, active and topological hyperbolic metamaterials, and perovskite optoelectronics. She is the author of book “Semiconductor Nanolasers” by Cambridge University Press, published in 2017.

Dr. Gu’s experimental research in nanophotonics lies at the intersection of electrical engineering, physics and materials sciences. She holds a joint appointment of ECE and Physics, and is a member of the Chancellor's Faculty Excellence Cluster in Carbon Electronics.

Marina Radulaski (UC Davis): Electrical and Systems Engineering Seminar

Raisler Lounge (Towne 225) 107 Towne Building, Philadelphia

Title: “Color center photonics in silicon carbide: scalable fabrication, cryogenic experiments, and quantum simulation on NISQ testbeds”

Color center systems are among the leading platforms in the development of quantum communication and quantum sensing hardware due to their desirable spin, optical, and spin-photon properties. Among them, the near infrared emitters in silicon carbide, such as the nitrogen-vacancy center in 4H-SiC, provide fiber-friendly operation in an industrially mature substrate, ideal for scalable deployment of quantum networking hardware. By exploring the triangular geometry in quantum-grade SiC, we develop the first wafer-scale fabrication process for color center photonics based on ion beam etching at an angle, realizing a broad range of devices for guiding and resonating light.
 
Due to their near-identical emission, color centers enable unprecedented studies of multi-emitter-cavity physics, or the Tavis-Cummings (TC) model, with applications in quantum light generation and quantum memories. Here, a lossy resonator interacts with multiple quantum emitters in resonant and off-resonant systems. Modeling of TC systems in an open quantum setting is limited to small dimensions on classical computing resources. We explore how quantum computers can help bridge this knowledge gap and propose algorithms for quantum mapping, analog and digital simulation of the TC model on superconducting and trapped ion DOE testbeds.