Marina Radulaski (UC Davis): Electrical and Systems Engineering Seminar
Marina Radulaski (UC Davis): Electrical and Systems Engineering Seminar
Title: “Color center photonics in silicon carbide: scalable fabrication, cryogenic experiments, and quantum simulation on NISQ testbeds”
Color center systems are among the leading platforms in the development of quantum communication and quantum sensing hardware due to their desirable spin, optical, and spin-photon properties. Among them, the near infrared emitters in silicon carbide, such as the nitrogen-vacancy center in 4H-SiC, provide fiber-friendly operation in an industrially mature substrate, ideal for scalable deployment of quantum networking hardware. By exploring the triangular geometry in quantum-grade SiC, we develop the first wafer-scale fabrication process for color center photonics based on ion beam etching at an angle, realizing a broad range of devices for guiding and resonating light.
Due to their near-identical emission, color centers enable unprecedented studies of multi-emitter-cavity physics, or the Tavis-Cummings (TC) model, with applications in quantum light generation and quantum memories. Here, a lossy resonator interacts with multiple quantum emitters in resonant and off-resonant systems. Modeling of TC systems in an open quantum setting is limited to small dimensions on classical computing resources. We explore how quantum computers can help bridge this knowledge gap and propose algorithms for quantum mapping, analog and digital simulation of the TC model on superconducting and trapped ion DOE testbeds.